

戰 ── 銅 ── 鈦 ── 銀 ── Mg, C Pt ──	— 鋼鐵 — 電線、水管 — 塗料 — 照相底片 Cr, V, Co —— 鋼鐵添加物 — 工業及汽車用催化劑	
TABLE 21.1 and Defense	Some Transition Metals Important to t	he U.S. Economy
TABLE 21.1 and Defense Metal	Some Transition Metals Important to t Uses	he U.S. Economy Percentage Imported
TABLE 21.1and DefenseMetalChromium	Some Transition Metals Important to t Uses Stainless steel (especially for parts exposed to corrosive gases and high temperatures)	Percentage Imported
TABLE 21.1and DefenseMetalChromiumCobalt	Some Transition Metals Important to t Uses Stainless steel (especially for parts exposed to corrosive gases and high temperatures) High-temperature alloys in jet engines, magnets, catalysts, drill bits	he U.S. Economy Percentage Imported ~91% ~93%
TABLE 21.1 and Defense Metal Chromium Cobalt Manganese	Some Transition Metals Important to t Uses Stainless steel (especially for parts exposed to corrosive gases and high temperatures) High-temperature alloys in jet engines, magnets, catalysts, drill bits Steelmaking	he U.S. Economy Percentage Imported ~91% ~93% ~97%

	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc
Atomic number	21	22	23	24	25	26	27	28	29	30
Electron configuration	$4s^23d^1$	$4s^23d^2$	$4s^23d^3$	$4s^{1}3d^{5}$	$4s^23d^5$	$4s^23d^6$	$4s^23d^7$	$4s^23d^8$	$4s^{1}3d^{10}$	$4s^23d^{10}$
Atomic radius (pm) lonization energies (eV/atom)	162	147	134	130	135	126	125	124	128	138
First	6.54	6.82	6.74	6.77	7.44	7.87	7.86	7.64	7.73	9.39
Second	12.80	13.58	14.65	16.50	15.64	16.18	17.06	18.17	20.29	17.96
Third	24.76	27.49	29.31	30.96	33.67	30.65	33.50	35.17	36.83	39.72
Reduction potential† (V)	-2.08	-1.63	-1.2	-0.91	-1.18	-0.44	-0.28	-0.23	+0.34	-0.76
Common oxidation states	+3	+2,+3, +4	+2,+3, +4,+5	+2,+3, +6	+2,+3, +4,+7	+2,+3	+2,+3	+2	+1,+2	+2
Melting point (°C)	1397	1672	1710	1900	1244	1530	1495	1455	1083	419
Density (g/cm ³)	2.99	4.49	5.96	7.20	7.43	7.86	8.9	8.90	8.92	7.14
Electrical conductivity [±]	-	2	3	10	2	17	24	24	97	27

Cr			0
 相對上較稀少 通常形成+2、+3、+4、及+6 原劑,可以將水中O₂的移除。 酸性溶液中會被還原成Cr³⁺。 	賈化合物,(Cr ⁶⁺ 是很好 TABLE 21.5 Typical Chron	Cr ²⁺ 是很強的還 的氧化劑,在 nium	
	Compounds Oxidation State of Chromium	Examples of Compounds (X = halogen)	
	+2 +3	CrX_2 CrX_3 Cr_2O_3 (green) $Cr(OH)_3$ (blue grean)	
	+6		

1. 含量 2. 用放 3. +7 网	Mn 量上相對豐富(0.1% of the 於製造岩石壓碎機、銀行 +2價氧化態都存在,其 近有常目陰難子形成	e earth's cr 金庫、裝甲 其中於+7及	ust) 鋼板等特別硬 +2價最常見。	⑧ 的鋼材 Mn ²⁺
鹽	加有市兑运融了形成 類。在水溶液中Mn ²⁺ 成淡粉紅色Mn(H ₂ O) ₆ ²⁺ 。	TABLE 21.6 Some Compo Manganese in Common Oxi Oxidation	ounds of n Its Most dation States	
		State of Manganese	Examples of Compounds	
		+2	$\begin{array}{c} Mn(OH)_2 \text{ (pink)}\\ MnS \text{ (salmon)}\\ MnSO_4\\ \text{ (reddish)}\\ MnCl_2 \text{ (pink)} \end{array}$	
		+4	MnO ₂	
		+7	(dark brown) $KMnO_4$ (purple)	
	L			

		Ģ
	Cu	
1 廣泛的分	佑在今S As CI 及碳酸酶的礦物中	
	雨供口0,70,0,0,0,0,0,00000000000000000000000	
Z. 具有局导	電性及机腐蝕性,用於鉛官及電士工的應用力	
面,及合	金的製造	
3 在空氣中	慢慢腐蝕 形成銅綠	
4. 在化合物	中以+1及+2俱氧化您仔住,间土安局+2俱	
4. 在化合物 5. 微量的Cu	中以+1及 +2頃氧化態件在,间主安為+2頃 為生命所必需,大量的Cu則有劇毒	
4. 在化合物 5. 微量的Cu	中以+1及 +2頃氧化態存在,而主要為+2頃 為生命所必需,大量的Cu則有劇毒	
4. 在化合物 5. 微量的Cu TABLE 21.10	中以+1及 +2頃氧化態存在,而主要為+2頃 為生命所必需,大量的Cu則有劇毒 Alloys Containing Copper	
4. 在化合物 5. 微量的Cu TABLE 21.10 Alloy	中以+1及 +2頃氧化感仔在,间主安為+2頃 為生命所必需,大量的Cu則有劇毒 Alloys Containing Copper Composition (% by mass in parentheses)	
4. 在化合物 5. 微量的Cu TABLE 21.10 Alloy Brass	中以+1及+2頃範行住,间主委為+2頃 為生命所必需,大量的Cu則有劇毒 Alloys Containing Copper Composition (% by mass in parentheses) Cu (20–97), Zn (2–80), Sn (0–14), Pb (0–12), Mn (0–25)	•
4. 在化合物 5. 微量的Cu TABLE 21.10 Alloy Brass Bronze	中以+1及+2頃範行症,间主委為+2頃 為生命所必需,大量的Cu則有劇毒 Alloys Containing Copper Composition (% by mass in parentheses) Cu (20–97), Zn (2–80), Sn (0–14), Pb (0–12), Mn (0–25) Cu (50–98), Sn (0–35), Zn (0–29), Pb (0–50), P (0–3)	•
4. 在化合物 5. 微量的Cu TABLE 21.10 Alloy Brass Bronze Sterling silver	中以+1次+2頃範行住,间主委為+2頃 為生命所必需,大量的Cu則有劇毒 Alloys Containing Copper Composition (% by mass in parentheses) Cu (20–97), Zn (2–80), Sn (0–14), Pb (0–12), Mn (0–25) Cu (50–98), Sn (0–35), Zn (0–29), Pb (0–50), P (0–3) Cu (7.5), Ag (92.5)	•
4. 在化合物 5. 微量的Cu TABLE 21.10 Alloy Brass Bronze Sterling silver Gold (18-karat)	中以+1次+2頃戦112忠持年,前王安為+2頃 為生命所必需,大量的Cu則有劇毒 Alloys Containing Copper Composition (% by mass in parentheses) Cu (20–97), Zn (2–80), Sn (0–14), Pb (0–12), Mn (0–25) Cu (50–98), Sn (0–35), Zn (0–29), Pb (0–50), P (0–3) Cu (7.5), Ag (92.5) Cu (5–15), Au (75), Ag (10–20)	
4. 在化合物 5. 微量的Cu TABLE 21.10 Alloy Brass Bronze Sterling silver Gold (18-karat) Gold (14-karat)	中以+1次+2頃戦112忠存在,101王安為+2頃 為生命所必需,大量的Cu則有劇毒 Alloys Containing Copper Composition (% by mass in parentheses) Cu (20–97), Zn (2–80), Sn (0–14), Pb (0–12), Mn (0–25) Cu (50–98), Sn (0–35), Zn (0–29), Pb (0–50), P (0–3) Cu (7.5), Ag (92.5) Cu (5–15), Au (75), Ag (10–20) Cu (12–28), Au (58), Ag (4–30)	

TABLE 21.1Typical ComCopper	I1 pounds of	
Oxidation State of Copper	Examples of Compounds	
+1	Cu ₂ O (red) Cu ₂ S (black) CuCl (white)	
+2	CuO (black) CuSO ₄ \cdot 5H ₂ O (blue) CuCl ₂ \cdot 2H ₂ O (green)	
		s.

21.3 Coordination Compounds

typically consists of a complex ion and counter ions (anions or cations as needed to produce a neutral compound).

 $[Co(NH_3)_5Cl]Cl_2$ $[Fe(en)_2(NO_2)_2]_2SO_4$ $Na3[Mo(CO)_3(CN)_3]$

0

TABLE	21.12 Typical	Coordina	tion Numbers for	Some Co	mmon
Metal	ons				
	Coordination		Coordination		Coordination
M+	Numbers	M ²⁺	Numbers	M ³⁺	Numbers
Cu^+	2, 4	Mn ²⁺	4.6	Sc ³⁺	6
$A \sigma^+$	2	Fe ²⁺	6	Cr ³⁺	6
	2.4	Co^{2+}	4, 6	Co ³⁺	6
Au^+	2,4				
Au ⁺	2, 4	Ni ²⁺	4, 6		
Au ⁺	2, 4	Ni ²⁺ Cu ²⁺	4, 6 4, 6	Au ³⁺	4

•	TABLE 21.14 Names of Some Unidentate Ligan Neutral Mode	Common ds viecules	0
	Aqua Ammine Methylamine Carbonyl Nitrosyl Anior	H ₂ O NH ₃ CH ₃ NH ₂ CO NO	
	Fluoro Chloro Bromo Iodo Hydroxo Cyano	F ⁻ Cl ⁻ Br ⁻ I ⁻ OH ⁻ CN ⁻	

TABLE 21Latin NamMetal IonsComplex I	1.15 nes Used for Some s in Anionic lons	
Metal	Name in an Anionic Complex	
Iron	Ferrate	
Copper	Cuprate	
Lead	Plumbate	
Silver	Argentate	
Gold	Aurate	
Tin	Stannate	

-

21.7 The Biologic Importance of Coordination Complexes

First-Row ransition Metal	Biologic Function(s)
Scandium	None known.
Titanium	None known.
Vanadium	None known in humans.
Chromium	Assists insulin in the control of blood sugar; may also
	be involved in the control of cholesterol.
Manganese	Necessary for a number of enzymatic reactions.
Iron	Component of hemoglobin and myoglobin; involved in the electron-transport chain.
Cobalt	Component of vitamin B ₁₂ , which is essential for the metabolism of carbohydrates, fats, and proteins.
Nickel	Component of the enzymes urease and hydrogenase.
Copper	Component of several enzymes; assists in iron storage; involved in the production of color pigments of hair, skin, and eyes.
Zinc	Component of insulin and many enzymes.

0

TABLE 21.19 Co	mmon Minerals Found
in Ores Anion	Examples
None (free metal) Oxide	Au, Ag, Pt, Pd, Rh, Ir, Ru Fe_2O_3 (hematite) Fe_3O_4 (magnetite) Al_2O_3 (bauxite)
Sulfide	SnO ₂ (cassiterite) PbS (galena) ZnS (sphalerite) FeS ₂ (pyrite) HgS (cinnabar) CnS ² (keleneite)
Chloride	NaCl (rock salt) KCl (sylvite)
Carbonate	FeCO ₃ (siderite) CaCO ₃ (limestone) MgCO ₃ (magnesite) MgCO ₂ · CaCO ₂ (dolomite)
Sulfate	$CaSO_4 \cdot 2H_2O$ (gypsum) BaSO ₄ (barite)
Silicate	$Be_3Al_2Si_6O_{18}$ (beryl) $Al_2(Si_2O_8)(OH)_4$ (kaolinite) $LiAl(SiO_3)_5$ (spondumene)

TABLE 21.20 ExamplesLeaching Solutions	of Methods for Recovery of Metal lons from
Method	Examples
Precipitation of a salt Reduction { Electrolytic	$Cu^{2+}(aq) + S^{2-}(aq) \longrightarrow CuS(s)$ $Cu^{+}(aq) + HCN(aq) \longrightarrow CuCN(s) + H^{+}(aq)$ $\begin{cases} Au^{+}(aq) + Fe^{2+}(aq) \longrightarrow Au(s) + Fe^{3+}(aq) \\ Cu^{2+}(aq) + Fe(s) \longrightarrow Cu(s) + Fe^{2+}(aq) \\ Ni^{2+}(aq) + H_{2}(g) \longrightarrow Ni(s) + 2H^{+}(aq) \\ Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s) \\ Al^{3+}(aq) + 3e^{-} \longrightarrow Al(s) \end{cases}$
Reduction plus precipitation	$2\mathrm{Cu}^{2+}(aq) + 2\mathrm{Cl}^{-}(aq) + \mathrm{H}_{2}\mathrm{SO}_{3}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \longrightarrow$

FABLE 21.21 Percent Composition and Uses of Various Types of Steel									
Type of Steel	% Carbon	% Manganese	% Phosphorus	% Sulfur	% Silicon	% Nickel	% Chromium	% Other	Uses
Plain carbon	≤1.35	≤1.65	≤0.04	≤0.05	≤0.60	-	-	-	Sheet steel, tools
High-strength (low-alloy)	≤0.25	≤1.65	≤0.04	≤0.05	0.15– 0.9	0.4-1	0.3-1.3	Cu (0.2–0.6) Sb (0.01–0.08) V (0.01–0.08)	Transportation equipment, structural beams
Alloy	≤1.00	≤3.50	≤0.04	≤0.05	0.15– 2.0	0.25– 10.0	0.25-4.0	Mo (0.08-4.0) V (0-0.2) W (0-18) Co (0-5)	Automobile and aircraft engine parts
Stainless	0.03- 1.2	1.0-10	0.04– 0.06	≤0.03	1–3	1–22	4.0-27	_	Engine parts, steam turbine parts, kitchen utensils
Silicon	-	-	-	-	0.5– 5.0	-	-	-	Electric motors and