第3章有機化學反應種類及酸鹼有機反應

- 一) 有機化反應的種類及有機反應機制 (organic reactions and their mechanism)
- 1) a) Substitution reaction: (Saturated compound such as alkanes or alkyl halides, aromatic compounds)

 $H_{3}C - CI + Na^{+}OH^{-} \xrightarrow{H_{2}O} H_{3}C - OH + Na^{+}CI^{-}$ A substitution reaction $One \ group \ replace \ another$ $\longrightarrow -CH_{2}Br + NaCN \longrightarrow \swarrow -CH_{2}CN + NaBr$

b) Addition reactions: Compounds with multiple bonds

An addition reaction

Two molecules become one, all parts of adding reacts appear in the products

c) Elimination reactions: used in the preparation of double bonds and triple bonds

Opposite to addition, a small molecule lost from one molecule

d) Rearrangement reactions:

The molecule undergoes a reorganization of it constitutional parts 2) Mechanism of a reaction: 從分子的角度解釋由產物到生成物的過程

Briefly explain the above reactions

3) Homolysis and heterolysis of covalent bond (共價鍵之均裂和異裂):

$$A : B \longrightarrow A \cdot + \cdot B$$
 Homolytic bond cleavage
Radicals

二)有機酸鹼反應(瞭解用curve arrow表達反應機制;化合物結構與反應性之間的關係;用熱力學常數預測反應的平衡;溶劑對反應的影響;有機合成的初步概念)

1) Brønsted-Lowry 酸碱理論:

酸:給出質子 驗:接受質子

Hydronium (H3O⁺): exist in aqueous solution in significant amount

When Aqueous hydrogen chloride and aqueous sodium hydroxide are mixed, the actual reaction is between hydronium and hydroxide ions:

2) Lewis 酸碱理論(比Brønsted-Lowry 酸碱理論定義更為廣泛):

- 酸:接受電子對
- 鹼:給出電子對

Note that the proton also lose an electron pair as new bond is formed with nitrogen.

在有機化學中普遍應用的Lewis 酸: Zn²⁺, Fe^{3+,} BF₃..... etc.

H₂O OH

Opposite Charges Attract and React

 $CH_3OCH_3 + BF_3 \longrightarrow$

2) Define the Lewis acids and bases for each of the following:

 $(CH)_3B$ $H^ (Ph)_3P$ Br^-

正碳離子(carbocation):

親電試劑 (electrophiles): reagents which in their reactions seek extra electrons that will give them a stable valence shell of electrons.

親核試劑 (nucleophiles): reagents which in their reactions seek a proton or some other positive centers

*The curved arrow begins with a covalent bond or unshared electron pair (site of higher electron density) and points toward a site of electron deficiency.

*It shows the movement of electron flow <u>but not</u> the movement of atoms

This leads to the

formation of a

hydronium ion and

A water molecule uses one of the nonbonding electron pairs to form a bond to a proton of HCI. The bond between the hydrogen and chlorine breaks with the electron pair going to the chlorine atom.

Exercise (page 103):Use the curved-arrow notation to write the reaction between (CH3)2NH and BF3.

3) 酸鹼強度

$$\int_{CH_{3}}^{O} C_{OH}^{O} + H_{2}O = \int_{CH_{3}}^{O} C_{O-}^{O} + H_{3}O^{+}$$

$$K_{eq} = \frac{[H_{3}O^{+}][CH_{3}CO_{2}^{-}]}{[CH_{3}CO_{2}H][H_{2}O]}$$

$$K_{a} = K_{eq} [H_{2}O] = \frac{[H_{3}O^{+}][CH_{3}CO_{2}^{-}]}{[CH_{3}CO_{2}H]}$$
Acidic constant

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]} \quad pK_{a} = -\log K_{a}$$

 $CH_3CO_2H\,<\,CF_3CO_2H\,<HCl$

 $pK_a = 4.75$ $pK_a = 0$ $pK_a = -7$

Weak acid

Very strong acid

Increasing acid strength

	Acid	Approximate pK _a	Conjugate Base	
Strongest acid	HSbF ₆	<-12	${ m SbF_6}^-$	Weakest base
	HI	-10	-	
	H_2SO_4	-9	HSO ₄ ⁻	
	HBr	-9	Br ⁻	
	HCI	-7	CI-	
	$C_6H_5SQ_3H$	-6.5	$C_6H_5SO_3^-$	
ength	(CH ₃) ₂ ŎH	-3.8	(CH ₃) ₂ O	
	$(CH_3)_2C = OH$	-2.9	$(CH_3)_2C=O$	
	$CH_3 \overset{+}{O}H_2$	-2.5	CH ₃ OH	
	H_3O^+	-1.74	H ₂ O	
	HNO ₃	-1.4	NO ₃ ⁻	Ξ
	CF_3CO_2H	0.18	$CF_3CO_2^-$	crea
	HF	3.2	F ⁻	Isin
str	CH ₃ CO ₂ H	4.75	CH ₃ CO ₂ ⁻	gb
acid	H_2CO_3	6.35	HCO ₃ ⁻	Ise
ng	CH ₃ COCH ₂ COCH ₃	9.0	CH₃COŪHCOCH₃	stre
easi	NH_4^+	9.2	NH ₃	ngtl
ncro	C ₆ H ₅ OH —	9.9	C_6H_5O-	-
	HCO ₃ ⁻	10.2	CO3 ²⁻	
	$CH_3NH_3^+$	10.6	CH ₃ NH ₂	
	H ₂ O —	15.7	OH^-	
	CH ₃ CH ₂ OH —	16	$CH_3CH_2O^-$	
	(CH ₃) ₃ COH	18	(CH ₃) ₃ CO ⁻	
	CH ₃ COCH ₃	19.2	$^{-}CH_{2}COCH_{3}$	
	HC=CH —	25	HC=C-	
	H ₂	35	H^-	
	NH ₃	38	NH_2^-	
	$CH_2 = CH_2 - $	44	$CH_2 = CH^-$	
Weakest acid	CH_3CH_3 —	50	$CH_3CH_2^-$	Strongest base

Carboxylic acid: $3 \sim 5$; alcohol $15 \sim 18$; ketones $\sim 20...$

Exercise (page 104-107): 1) HCO2H has $Ka = 1.77 \times 10^{-4}$, in a 0.1 M solution, what is the concentration of hydronium ions?

$$1.77 \times 10^{-4} = \frac{[\text{H}_3\text{O}^+] [\text{HCOO}^-]}{0.1}$$

2) Rationalize the Pka for H2O is 15.7:

Ka =
$$\frac{[10^{-7}][10^{-7}]}{55.5 \text{ M}} = 1.8 \times 10^{-16}$$

PKa = 15.7

3) The Pk_a of anilinium ion $(C_6H_5N^+H_3)$ is 4.6. On this basis, decide aniline is stronger or weaker base than methylamine:

 $CH_3N^+H_3$: 10.6, thus it is a weaker base than methylamine

3)利用酸鹼強度判斷酸碱反應的 equilibrium: <u>Acid base reaction favor the</u> <u>formation of the weaker acid and base.</u>

Equilibrium-controlled reactions: favoring the formation of more stable species.

Water insoluble carboxylic acids or bases can become soluble in aqueous sodium hydroxide:

Soluble in water (due to its polarity as a salt)

4) 決定化合物酸鹼性強弱的因素 a) Bond strength:

b) Electronegativity

Increasingly electronegative atoms polarize the bond and also stabilize the conjugate base better

Overview of Acidity Trends

c) Hybridization:

$HC \equiv CH > H_2C = CH_2 > H_3C - CH_3$

s orbitals are smaller and closer to the nucleus than p orbitals Anions in hybrid orbitals with more s character will be held more closely to the nucleus and be more stabilized

d) Resonance effect

stabilized by the resonance; Less potential energy than CH3CH2O⁻

 $O-H \rightarrow H^+$

 H^+

pKa = 16

Internuclear distance

The higher the potential energy of an object the less stable it is

Enthalpy ΔHo is a measure of the change in bond energies in a reaction:

Exothermic reactions:

 ΔHo is negative and heat is evolved.

Potential energy in the bonds of reactants is more than that of products

>Endothermic reactions

 ΔHo is positive and heat is absorbed Potential energy in the bonds of reactants is less than that of products

 $\Delta Go:$ the standard free energy change: $\Delta G^{\circ} = -RT \ln K_{eq}$

> If ΔGo is negative, products are favored at equilibrium (Keq >1) If ΔGo is positive, reactants are favored at equilibrium (Keq<1) If ΔGo is zero, products and reactants are equally favored (Keq = 1)

> > $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

Entropy change ΔS^o is related to the changes in relative order of the system

The more random a system is, the greater is its entropy

A positive ΔS^{o} means a system which is going from <u>more ordered to</u> <u>less ordered</u>

A negative ΔS^o :products unfavored

e) Inductive effect

The proton is more positive

Indicating the stronger acid (page 120): a) CHCl2CO2H > CH2ClCO2H b) CH2FCO2H > CH2BrCO2H; c) CCl3CO2H > CHCl2CO2H; d) CH2FCO2H > CH2FCH2CO2H

f) Solvent effect (protic solvent: is one has hydrogen attached to a strongly electronegtive element such as oxygen or nitrogen)

 $pKa = 4.75 \text{ in } H_2O$

Pka = 130 in gas phase

Explain the table in page 121.

- 4) Organic compounds as bases:
- a) organic compound containing an atom with a lone pair (O,S,N) can act as a base

b) π Electrons can also act as bases

5) A step-wise mechanism of a organic reaction:

tert-Butyloxonium ion The products are a protonated alcohol and water (the conjugate acid and base).

tert-Butyl alcohol acts as a base and accepts a proton from the hydronium ion. (Chloride anions are spectators in this step of the reaction.)

Carbocation

The bond between the carbon and oxygen of the tert-butyloxonium ion breaks heterolytically, leading to the formation of a carbocation and a molecule of water.

tert-Butyl chloride

The carbocation, acting as a Lewis acid, accepts an electron pair from a chloride ion to become the product. 6) Acid-base reaction in non-aqueous solution:

$$H - \ddot{O} + \ddot{K} + \ddot{K} H_2^- \longrightarrow H - \ddot{O} = H + \ddot{K} H_3$$

Stronger acid Stronger base Weaker base Weaker acid $pK_a = 15.7$ Weaker base $pK_a = 38$

Any base stronger than hydroxide will be converted to hydroxide in water

Sodium amide can be used as a strong base in solvents such as liquid NH3

 $H - C \equiv C \xrightarrow{\not{}} H + \overrightarrow{} : CH_2CH_3 \xrightarrow{hexane} H - C \equiv C :^- + CH_3CH_3$ Stronger acid $pK_a = 25 \qquad base \qquad base \qquad base \qquad acid$ $(from CH_3CH_2Li) \qquad pK_a = 50$

e)

$(CH_3)CONa + H_2O \implies (CH_3)COH + OH^-$

f)

$(CH_3)COH + NaOH$ $(CH_3)CO^- + H_2O^- + Na^+$

$$H \longrightarrow H \xrightarrow{(1) \text{ NaH}} H \longrightarrow D$$

$$CH_3CH_2Li + D_2O \xrightarrow{\text{hexane}} CH_3CH_2D$$

$$CH_3CH_2OH + NaH \xrightarrow{(1) \text{hexane}} CH_3CH_2OT$$

Exercise (page 129):

3.15: what is the conjugate base of each of the following acid?

(a) NH_3 : NH_2^- (c) H_2 : H^- (e) CH_3OH : CH_3O^-

(b) $H_2O: OH^-$ (d) $HC \equiv CH: ^-C \equiv CH$ (f) $H_3O^+: H_2O$

3.16: List the bases you gave as answers to Problem **3.15** in order of decreasing basicity:

Acidity: $H_3O^+ > H_2O > CH_3OH > HC \equiv CH > H_2 > NH_3$

Basicity: $NH_2^- > H^- > C \equiv CH > CH_3O^- > OH^- > H_2O$

3.17: what is the conjugate acid of each of the following bases:

(a) $HSO_4^-: H_2SO_4$ (c) $CH_3NH_2: CH_3NH_3^+$ (e) $CH_3CH_2^-: CH_3CH_3$

(b) $H_2O: H_3O^+$ (d) $NH_2^-: NH_3$ (f) $CH_3CO_2^-: CH_3CO_2H$

3.18 List the acids you gave as answers to Problem **3.15** in order of decreasing acidity:

Acidity: $H_2SO_4 > H_3O^+ > CH_3CO_2H > CH_3NH_3^+ > NH_3 > CH_3CH_3$

3.19 Designate the LA and LB in each of the following reactions:

3.20 Rewrite each of the following reactions using curved arrows and show all non-bonding electron pairs:

3.21 When CH3OH is treated with NaH, the product is CH3O⁻Na⁺ and H₂ and not Na⁺CH₂OH and H₂, explain:

 $Pk_{aCH3} > Pk_{aOH}$

 $Pk_aCH_3OH \sim 15; Pk_aH_2 \sim 35;$

3.22 What reaction will take place if EtOH is added to a solution of $HC \equiv C^{-}Na^{+}$ in liquid ammonia:

Et-OH + $^+Na^-C\equiv CH \xrightarrow{NH_3(l)} Et-O^- + HC\equiv CH$

3.22 omitted

3.33 Acid HA has a PKa = 20; acid HB has a PKa = 10:

a) Which is the stronger acid: HB

^{b)} $Na^+A^- + HB \longrightarrow HA + Na^+B^-$

3.25 Write the equation, using curved-arrow notation:

- d) $Et^{-}Li^{+}$ + H \longrightarrow H \xrightarrow{hexane} CH_3CH_3 + $\xrightarrow{-}$ H
- $PK_{aCH3CH3} \sim 50$ $PK_{aCHCH} \sim 25$

e) $Et^{-}Li^{+}$ + EtOH \xrightarrow{hexane} $CH_{3}CH_{3}$ + EtO^{-} $PK_{aCH3CH3} \sim 50$ $PK_{aEtOH} \sim 16$

3.26 Showing the syntheses of each of the following:

3.27 a) arrange the following compounds in order of decreasing acidity and explain:

$$EtO-H > Et-N-H > H_{3}CH_{2}C-H$$

electronegtivity decreases

b) Arrange the conjugate bases in order of increasing basicity:

$$EtO^{-} < Et\overline{NH} < CH_{3}\overline{CH}_{2}$$

- **b**) $CH_3CHClCO_2H > CH_3CH_2CO_2H > CH_3CH_2CH_2OH$
- c) $CH_3CH_2OH_2^+ > CH_3CH_2OH > CH_3OCH_3$

3.29 Arrange the following compounds in order of increasing basicity:

- a) $CH_3NH_3^+ < CH_3NH_2 < CH_3NH^-$
- **b**) $CH_3O^- < CH_3NH^- < CH_3CH_2^-$
- c) $CH_3C \equiv C^- < CH_3CH_2 = CH^- < CH_3CH_2CH_2^-$

3.30 Draw the structures of triprotic acid H3PO4 and diprotic acid H3PO3

3.31 Supply the curved arrow necessary for the following reactions:

b): salt form is dominating

electron-attracting inductive effect

- b) Two negative centers
- 3.34: HB 3.35 Omitted

3.36 a) Explain both protons being more acidic than acetic acid

b) Explain all of the C-C bond in dianion are same length as well as all of the C-O bonds

