第3章有機化學反應種類及酸睮有機反應

一）有機化反應的種類及有機反應機制（organic reactions and their mechanism）

1）a）Substitution reaction：（Saturated compound such as alkanes or alkyl halides， aromatic compounds）

$$
\mathrm{H}_{3} \mathrm{C}-\mathrm{Cl}+\mathrm{Na}^{+} \mathrm{OH}^{-} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{H}_{3} \mathrm{C}-\mathrm{OH}+\mathrm{Na}^{+} \mathrm{Cl}^{-}
$$

A substitution reaction
One group replace another

b）Addition reactions：Compounds with multiple bonds

An addition reaction
Two molecules become one, all parts of adding reacts appear in the products

c) Elimination reactions: used in the preparation of double bonds and triple bonds

Opposite to addition, a small molecule lost from one molecule

d）Rearrangement reactions：

The molecule undergoes a reorganization of it constitutional parts
2）Mechanism of a reaction：從分子的角度解釋由產物到生成物的過程

Briefly explain the above reactions

3）Homolysis and heterolysis of covalent bond（共價鍵之均裂和異裂）：

Radicals

Ions
${ }^{\delta+} \mathbf{A}: \mathbf{B}^{\delta-} \longrightarrow \mathbf{A}^{+}+: \mathbf{B}^{-} \begin{aligned} & \text { Heterolysis normally requires the bonds to } \\ & \text { be polarized }\end{aligned}$

Explain

二）有機酸嶮反應（瞭解用 curve arrow表達反應機制；化合物結構與反應性之間的關係；用熱力學常數預測反應的平衡；溶刺對反應的影響；有機合成的初步概念）

1）Brønsted－Lowry 酸碱理論：
酸：給出質子
䲓：接受質子

Hydronium（ ${\mathrm{H} 3 \mathrm{O}^{+} \text {）：exist in }}$ aqueous solution in significant amount

$$
\begin{aligned}
& \mathrm{HI}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{I}^{-} \\
& \mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Br}^{-} \\
& \mathrm{H}_{2} \mathrm{SO}_{4} \text { : } \\
& \text { diprotic acid } \\
& \mathrm{NaOH} \\
& \mathrm{Na}_{(\mathrm{aq})}{ }^{+}+\mathrm{OH}_{(\mathrm{aq})}{ }^{-} \\
& \text {Solvated sodium ion } \\
& \text { exist in aqueous } \\
& \text { solution in } \\
& \text { significant } \\
& \text { amount }
\end{aligned}
$$

When Aqueous hydrogen chloride and aqueous sodium hydroxide are mixed, the actual reaction is between hydronium and hydroxide ions:

Net reaction

2）Lewis 酸碱理論（比Brønsted－Lowry 酸碱理論定義更為廣泛 ）：
酸：接受電子對
鹼：給出電子對

Note that the proton also lose an electron pair as new bond is formed with nitrogen．

Accept an electron pair without
breaking any bond

Lewis acid Lewis base （electron pair（electron pair acceptor）donor）

在有機化學中普遍應用的Lewis 酸： $\mathbf{Z n}^{2+}, \mathbf{F e}^{3+} \mathbf{B F}_{3 \ldots}$. etc．

$$
\begin{array}{cc}
\text { Lewis base } & \text { Lewis acid } \\
\text { (electron pair } & \text { (electron pair } \\
\text { donor) } & \text { acceptor) }
\end{array}
$$

Lewis base Lewis acid （electron pair（electron pair donor）acceptor）

Opposite Charges Attract and React

Exercise (page 100): $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{BF}_{3} \longrightarrow$

1) Write the equations:

$$
\begin{aligned}
& \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{AlCl}_{3} \longrightarrow \\
& \mathrm{CH}_{3} \mathrm{OCH}_{3}+\mathrm{BF}_{3} \longrightarrow
\end{aligned}
$$

2) Define the Lewis acids and bases for each of the following:

$(\mathrm{Ph})_{3} \mathrm{P} \quad \mathrm{Br}^{-}$
$(\mathrm{CH})_{3} \mathrm{~B}$
H^{-}

正碳離子（carbocation）：

親電試劑（electrophiles）：reagents which in their reactions seek extra electrons that will give them a stable valence shell of electrons．

負碳離子（carboanion）：

Carbanion

$$
\begin{aligned}
& \text { Carbanion Lewis acid }
\end{aligned}
$$

親核試劑（nucleophiles）：reagents which in their reactions seek a proton or some other positive centers

nucleophile

carbocation
*The curved arrow begins with a covalent bond or unshared electron pair (site of higher electron density) and points toward a site of electron deficiency.
*It shows the movement of electron flow but not the movement of atoms

A water molecule uses one of the nonbonding electron pairs to form a bond to a proton of HCl . The bond
between the hydrogen
and chlorine breaks
with the electron pair going to the chlorine atom.

This leads to the formation of a hydronium ion and a chloride ion.

Acid Base

Exercise (page 103):Use the curved-arrow notation to write the reaction between (CH3)2NH and BF3.

3）酸鹼強度

$$
\begin{gathered}
\stackrel{\mathrm{O}}{\|} \mathrm{CH}_{3}^{-} \stackrel{\text { OH }}{\mathrm{H}_{2} \mathrm{O} \stackrel{\mathrm{O}}{\stackrel{\mathrm{O}}{\mathrm{C}}} \mathrm{CH}_{3}^{-}}+\mathrm{O}_{3}^{-} \mathrm{O}^{+} \\
K_{\mathrm{eq}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
K_{\mathrm{a}}=K_{\mathrm{eq}}\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]}
\end{gathered}
$$

Acidic constant

$$
\begin{aligned}
& K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}} \\
& \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}<\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}<\mathrm{HCl} \\
& \begin{array}{ccc}
\mathrm{p} K_{a}=4.75 & \mathrm{p} K_{a}=0 & \mathrm{p} K_{a}=-7 \\
\text { Weak acid } & & \text { Very strong acid }
\end{array}
\end{aligned}
$$

	Acid	Approximate $\mathrm{p} K_{\mathrm{a}}$	Conjugate Base	
Strongest acid	HSbF_{6}	<-12	$\mathrm{SbF}_{6}{ }^{-}$	Weakest base
	H	－10	1^{-}	
	$\mathrm{H}_{2} \mathrm{SO}_{4}$	－9	$\mathrm{HSO}_{4}{ }^{-}$	
	HBr	－9	Br^{-}	
	HCl	－7	Cl^{-}	
A	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$	－6．5	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3}{ }^{-}$	
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}^{+} \mathrm{H}$	－3．8	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$	
	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}={ }^{+} \mathrm{H}$	－2．9	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$	
	$\mathrm{CH}_{3}{ }_{\mathrm{O}}^{+} \mathrm{H}_{2}$	－2．5	$\mathrm{CH}_{3} \mathrm{OH}$	
	$\mathrm{H}_{3} \mathrm{O}^{+}$	－1．74	$\mathrm{H}_{2} \mathrm{O}$	
	HNO_{3}	－1．4	$\mathrm{NO}_{3}{ }^{-}$	
	$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$	0.18	$\mathrm{CF}_{3} \mathrm{CO}_{2}{ }^{-}$	$\stackrel{\text { \％}}{ }$
\％	HF	3.2		
霔	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	4.75	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	－
－	$\mathrm{H}_{2} \mathrm{CO}_{3}$	6.35	$\mathrm{HCO}_{3}{ }^{-}$	\％
$\stackrel{0}{0}$	$\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$	9.0	$\mathrm{CH}_{3} \mathrm{CO} \overline{\mathrm{C}} \mathrm{HCOCH}_{3}$	$\frac{\square}{1}$
㓪	NH_{4}^{+}	9.2	NH_{3}	号
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}-$	9.9	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}-$	
	$\mathrm{HCO}_{3}{ }^{-}$	10.2	$\mathrm{CO}_{3}{ }^{\text {－}}$	
	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	10.6	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	
	$\mathrm{H}_{2} \mathrm{O}-$	15.7	OH^{-}	
	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	16	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$	
	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}-$	18	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CO}^{-}$	
	$\mathrm{CH}_{3} \mathrm{COCH}_{3}$	19.2	${ }^{-} \mathrm{CH}_{2} \mathrm{COCH}_{3}$	
	$\mathrm{HC} \equiv \mathrm{CH}-$	25	$\mathrm{HC} \equiv \mathrm{C}^{-}$	
	H_{2}	35	H^{-}	
	NH_{3}	38	$\mathrm{NH}_{2}{ }^{-}$	
	$\mathrm{CH}_{2}=\mathrm{CH}_{2}-$	44	$\mathrm{CH}_{2}=\mathrm{CH}^{-}$	
Weakest acid	$\mathrm{CH}_{3} \mathrm{CH}_{3}-$	50	$\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{-}$	Strongest base

Carboxylic acid：3～5；alcohol $15 \sim 18$ ；ketones $\sim 20 \ldots$

Exercise (page 104-107): 1) HCO2H has $K a=1.77 \times 10^{-4}$, in a 0.1 M solution, what is the concentration of hydronium ions?

$$
1.77 \times 10^{-4}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCOO}^{-}\right]}{0.1}
$$

2) Rationalize the Pka for $\mathbf{H} 2 \mathrm{O}$ is 15.7:

$$
\begin{aligned}
& \mathrm{Ka}=\frac{\left[10^{-7}\right]\left[10^{-7}\right]}{55.5 \mathrm{M}}=1.8 \times 10^{-16} \\
& \mathrm{PKa}=15.7
\end{aligned}
$$

3) The Pk_{a} of anilinium ion $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{H}_{3}\right)$ is 4.6. On this basis, decide aniline is stronger or weaker base than methylamine:
$\mathrm{CH}_{3} \mathrm{~N}^{+} \mathrm{H}_{3}: 10.6$, thus it is a weaker base than methylamine

3）利用酸鹷強度判斷酸碱反應的 equilibrium：Acid base reaction favor the formation of the weaker acid and base．
Equilibrium－controlled reactions：favoring the formation of more stable species．

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}(?) \\
& \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Water insoluble carboxylic acids or bases can become soluble in aqueous sodium hydroxide:

Insoluble in water

Soluble in water
(due to its polarity as a salt)

Water-soluble salt

Water insoluble

4）決定化合物酸鹼性強弱的因素 a）Bond strength：

C $\mathrm{N} \quad \mathrm{O} \quad \mathrm{F}$

Acidity increases

$$
\begin{array}{cccc}
\mathrm{H}_{3} \mathrm{C}-\stackrel{\delta+}{\mathrm{H}} & \mathrm{H}_{2} \mathrm{~N}-\stackrel{\delta}{\mathrm{H}} & \mathrm{HO}-\stackrel{\delta+}{\mathrm{H}} & \stackrel{\delta-}{\mathrm{F}}-\stackrel{\delta+}{\mathrm{H}} \\
\mathbf{p} \boldsymbol{K}_{\mathrm{a}}=\mathbf{4 8} & \mathbf{p} \boldsymbol{K}_{\mathrm{a}}=\mathbf{3 8} & \mathbf{p} \boldsymbol{K}_{\mathrm{a}}=\mathbf{1 5 . 7} & \mathbf{p} \boldsymbol{K}_{\mathrm{a}}=\mathbf{3 . 2}
\end{array}
$$

Increasingly electronegative atoms polarize the bond and also stabilize the conjugate base better

Overview of Acidity Trends

c) Hybridization:

$\mathrm{HC} \equiv \mathrm{CH}>\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}>\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{3}$

s orbitals are smaller and closer to the nucleus than p orbitals
Anions in hybrid orbitals with more s character yuill be held more closely
to the nucleus and be more stabilized
d) Resonance effect

stabilized by the resonance;

$$
\mathrm{pKa}=4.75
$$

Less potential energy than CH3CH2O-

$$
\begin{aligned}
& \mathrm{O}-\mathrm{H} \longrightarrow \mathrm{O}^{-}+\mathrm{H}^{+} \\
& \mathrm{pKa}=16
\end{aligned}
$$

Internuclear distance
The higher the potential energy of an object the less stable it is

Enthalpy $\Delta H o$ is a measure of the change in bond energies in a reaction:
$>$ Exothermic reactions:
$\Delta H o$ is negative and heat is evolved.
Potential energy in the bonds of reactants is more than that of products
$>$ Endothermic reactions
$\Delta H o$ is positive and heat is absorbed Potential energy in the bonds of reactants is less than that of products

$\Delta G o$: the standard free energv change:

$$
\Delta G^{\circ}=-R T \ln K_{\mathrm{eq}}
$$

If $\Delta G o$ is negative, products are favored at equilibrium ($\mathbf{K e q}>1$) If $\Delta G o$ is positive, reactants are favored at equilibrium (Keq<1) If $\Delta G o$ is zero, products and reactants are equally favored ($\mathrm{Keq}=1$)

$$
\Delta G^{\circ}=\Delta H^{\circ}-\mathrm{T} \Delta S^{\circ}
$$

Entropy change ΔS° is related to the changes in relative order of the system

$$
\begin{array}{cl}
\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C} & \begin{array}{c}
\Delta \boldsymbol{S}^{o}: \text { negative }
\end{array} \\
\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+\mathrm{D} \\
\mathrm{~A} \longrightarrow \mathrm{C}+\mathrm{D} & \begin{array}{l}
\boldsymbol{\Delta} \boldsymbol{S}^{o} \sim \mathbf{0} \\
\Delta \boldsymbol{S}^{o}: \text { positive }
\end{array}
\end{array}
$$

The more random a system is, the greater is its entropy
A positive ΔS^{o} means a system which is going from more ordered to less ordered
A negative ΔS^{o} :products unfavored

Acetic acid
$\mathrm{p} K_{\mathrm{a}}=4.75$
$\Delta G^{\circ}=27 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$

Ethanol
$\mathrm{p} K_{\mathrm{a}}=16$
$\Delta G^{\circ}=\mathbf{9 0 . 8} \mathrm{kJ} \mathrm{mol}^{-1}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}^{-}$
$+\mathrm{H}_{3} \mathrm{O}^{+}$
$\Delta G^{\circ}=90.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

e) Inductive effect

The proton is more positive

Acetate anion Weaker base

Ethoxide anion
Stronger base

$\mathrm{p} K_{\mathrm{a}}=4.75$

$\mathrm{p} K_{\mathrm{a}}=\mathbf{2 . 8 6}$

Indicating the stronger acid (page 120): a) CHCl2CO2H > CH2ClCO2H b)

 CH2FCO2H > CH2BrCO2H; c) CCl3CO2H > CHCl2CO2H; d) CH2FCO2H > CH2FCH2CO2Hf) Solvent effect (protic solvent: is one has hydrogen attached to a strongly electronegtive element such as oxygen or nitrogen)

$\mathrm{pKa}=4.75$ in $\mathrm{H}_{2} \mathrm{O}$
Pka $=130$ in gas phase
Explain the table in page 121.
4) Organic compounds as bases:
a) organic compound containing an atom with a lone pair (O, S, N) can act as a base

b) π Electrons can also act as bases

5) A step-wise mechanism of a organic reaction:

tert-Butyloxonium ion

tert-Butyl alcohol acts as a base and accepts a proton from the hydronium ion. (Chloride anions are spectators in this step of the reaction.)

The products are a protonated alcohol and water (the conjugate acid and base).

Carbocation

The bond between the carbon and oxygen of the tert-butyloxonium ion breaks heterolytically, leading to the formation of a carbocation and a molecule of water.

tert-Butyl chloride
The carbocation, acting as a Lewis acid, accepts an electron pair from a chloride ion to become the product.
6) Acid-base reaction in non-aqueous solution:

Stronger acid

$\mathrm{p} K_{\mathrm{a}}=15.7$$\quad$ Stronger base \quad Weaker base | Weaker acid |
| :---: |
| $\mathrm{p} K_{\mathrm{a}}=38$ |

Any base stronger than hydroxide will be converted to hydroxide in water

Sodium amide can be used as a strong base in solvents such as liquid NH3

$$
\begin{array}{ccc}
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}+ & - & \mathrm{CH}_{2} \mathrm{CH}_{3} \\
\begin{array}{c}
\text { Stronger acid } \\
\mathbf{p} \boldsymbol{K}_{\mathrm{a}}=\mathbf{2 5}
\end{array} & \begin{array}{c}
\text { Stronger } \\
\text { base } \\
\text { (from } \left.\mathbf{C H}_{3} \mathbf{C H}_{2} \mathbf{L i}\right)
\end{array} & \begin{array}{c}
\text { Weaker } \\
\text { base }
\end{array}
\end{array} \begin{gathered}
\text { Weaker } \\
\text { acid } \\
\mathbf{p} K_{\mathrm{a}}=\mathbf{5 0}
\end{gathered}
$$

Write the acid-base reactions (page 126):
a)

$$
\mathrm{CH3OH}+\mathrm{NaH} \longrightarrow \mathrm{CH}_{3} \mathrm{O}^{-}+\mathrm{H}_{2}
$$

b)
$\mathrm{NaNH}_{2}+\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{3} \mathrm{O}^{-}$
c)

$$
\begin{aligned}
& \mathrm{NH}_{3}+\mathrm{CH}_{3} \mathrm{CH}_{3}^{-} \mathrm{Li}^{+} \xrightarrow{\text { d) }} \xrightarrow{\text { gas }} \mathrm{NH}_{2}^{-}+\mathrm{CH}_{3} \mathrm{CH}_{3} \text {. } \\
& \text { den }
\end{aligned}
$$

$\mathrm{NH}_{3}(\mathrm{l})$
$\mathrm{NH}_{4}{ }^{+} \mathrm{Cl}+\mathrm{NaNH}_{2} \longrightarrow 2 \mathrm{NH}_{3}+\mathrm{NaCl}$

$\left(\mathrm{CH}_{3}\right) \mathrm{CONa}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons\left(\mathrm{CH}_{3}\right) \mathrm{COH}+\mathrm{OH}^{-}$

$$
\begin{gathered}
\mathrm{H}=\mathrm{H} \xrightarrow[\text { 2) } \mathrm{D}_{2} \mathrm{O}]{=} \mathrm{H}=\mathrm{D} \\
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Li}+\mathrm{D}_{2} \mathrm{O} \xrightarrow{\text { hexane }} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{D} \\
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{NaH} \frac{\text { 2) hexane }}{\text { 2) } \mathrm{T} 2 \mathrm{O}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OT}
\end{gathered}
$$

Exercise (page 129):
3.15: what is the conjugate base of each of the following acid?
(a) $\mathrm{NH}_{3}: \mathrm{NH}_{2}^{-}$(c) $\mathrm{H}_{2}: \mathrm{H}^{-}$(e) $\mathrm{CH}_{3} \mathrm{OH}: \mathrm{CH}_{3} \mathrm{O}^{-}$
(b) $\mathrm{H}_{2} \mathrm{O}: \mathrm{OH}^{-}$(d) $\mathrm{HC} \equiv \mathrm{CH}:{ }^{-} \mathrm{C} \equiv \mathrm{CH}$ (f) $\mathrm{H}_{3} \mathrm{O}^{+}: \mathrm{H}_{2} \mathrm{O}$
3.16: List the bases you gave as answers to Problem 3.15 in order of decreasing basicity:

Acidity: $\mathrm{H}_{3} \mathrm{O}^{+}>\mathrm{H}_{2} \mathrm{O}>\mathrm{CH}_{3} \mathrm{OH}>\mathrm{HC} \equiv \mathrm{CH}>\mathrm{H}_{2}>\mathrm{NH}_{3}$
Basicity: $\mathrm{NH}_{2}^{-}>\mathrm{H}^{-}>{ }^{-} \mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{3} \mathrm{O}^{-}>\mathrm{OH}^{-}>\mathrm{H}_{2} \mathrm{O}$
3.17: what is the conjugate acid of each of the following bases:
(a) $\mathrm{HSO}_{4}^{-}: \mathrm{H}_{2} \mathrm{SO}_{4}$ (c) $\mathrm{CH}_{3} \mathrm{NH}_{2}: \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}$(e) $\mathrm{CH}_{3} \mathrm{CH}_{2}^{-}: \mathrm{CH}_{3} \mathrm{CH}_{3}$
(b) $\mathrm{H}_{2} \mathrm{O}: \mathrm{H}_{3} \mathrm{O}^{+}$(d) $\mathrm{NH}_{2}^{-}: \mathrm{NH}_{3}$ (f) $\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}: \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
3.18 List the acids you gave as answers to Problem 3.15 in order of decreasing acidity:

```
Acidity: }\mp@subsup{\textrm{H}}{2}{}\mp@subsup{\textrm{SO}}{4}{}>\mp@subsup{\textrm{H}}{3}{}\mp@subsup{\textrm{O}}{}{+}>\mp@subsup{\textrm{CH}}{3}{}\mp@subsup{\textrm{CO}}{2}{}\textrm{H}>\mp@subsup{\textrm{CH}}{3}{}\mp@subsup{\textrm{NH}}{3}{+}>\mp@subsup{\textrm{NH}}{3}{}>\mp@subsup{\textrm{CH}}{3}{}\mp@subsup{\textrm{CH}}{3}{
```

3.19 Designate the LA and LB in each of the following reactions:
a) $\mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{C}-\mathrm{Cl}+\mathrm{AlCl}_{3} \longrightarrow$

LB
LA

b) $\mathrm{H}_{3} \mathrm{C}-\mathrm{OH}+\mathrm{BF}_{3}$

LB
LA

LA
3.20 Rewrite each of the following reactions using curved arrows and show all non-bonding electron pairs:

a) $\mathrm{H}_{3} \mathrm{C}-\ddot{\mathrm{O}} \mathrm{H}+$

b) $\mathrm{H}_{3} \mathrm{C}-\ddot{\mathrm{N}} \mathrm{H}_{2}+$

$\longrightarrow \xrightarrow[+]{\mathrm{H}_{3} \mathrm{C}-\stackrel{\mathrm{H}_{+}^{+}}{\mathrm{H}} \mathrm{H}}+\mathrm{Cl}^{-}$
c)

3.21 When CH 3 OH is treated with NaH , the product is $\mathrm{CH}_{3}-\mathrm{Na}^{+}$and H_{2} and not $\mathrm{Na}^{+} \mathrm{CH}_{2} \mathrm{OH}$ and H_{2}, explain:

$$
\mathrm{Pk}_{\mathrm{aCH} 3}>\mathrm{Pk}_{\mathrm{aOH}}
$$

$$
\mathrm{Pk}_{\mathrm{a}} \mathrm{CH}_{3} \mathrm{OH} \sim 15 ; \mathrm{Pk}_{\mathrm{a}} \mathrm{H}_{2} \sim 35
$$

3.22 What reaction will take place if EtOH is added to a solution of $\mathrm{HC} \equiv \mathrm{C}^{-} \mathrm{Na}^{+}$in liquid ammonia:

$$
\mathrm{Et}-\mathrm{OH}+{ }^{+} \mathrm{Na}^{-} \mathrm{C} \equiv \mathrm{CH} \xrightarrow{\mathrm{NH}_{3}(l)} \mathrm{Et}-\mathrm{O}^{-}+\mathrm{HC} \equiv \mathrm{CH}
$$

3.22 omitted
3.33 Acid HA has a $\mathrm{PKa}=20$; acid HB has a $\mathrm{PKa}=10$:
a) Which is the stronger acid: HB
b)

$$
\mathrm{Na}^{+} \mathrm{A}^{-}+\mathrm{HB} \longrightarrow \mathrm{HA}+\mathrm{Na}^{+} \mathrm{B}^{-}
$$

3.25 Write the equation, using curved-arrow notation:
a)

PKa ~ 5

$$
\mathrm{H}_{2} \mathrm{O} \mathrm{PKa} \sim 15.7
$$

b)

$$
\text { PKa } \sim-6.5
$$

$\mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Na}^{+}+\mathrm{OH}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}^{+}$
$\mathrm{EtO}^{-}+\mathrm{H}=\mathrm{H} \longrightarrow \mathrm{EtOH}+{ }^{-} \equiv \mathrm{H}$

$$
\mathrm{PK}_{\mathrm{aEtOH}} \sim 16 \quad \mathrm{PK}_{\mathrm{a} \text { ethyne }} \sim 25
$$

d) $\mathrm{EtLi}^{+}+\mathrm{H}=\mathrm{H} \xrightarrow{\text { hexane }} \mathrm{CH}_{3} \mathrm{CH}_{3}+{ }^{-} \bar{\Longrightarrow} \mathrm{H}$ $\mathrm{PK}_{\text {аСнЗСН }} \sim 50 \quad \mathrm{PK}_{\text {аСНСН }} \sim 25$
e)
hexane
$\mathrm{Et}^{-} \mathrm{Li}^{+}+\mathrm{EtOH} \xrightarrow{\text { hexane }} \mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{EtO}^{-}$
PK $_{\text {аСнзСн }} \sim 50 \quad \mathrm{PK}_{\mathrm{aEtOH}} \sim 16$
3.26 Showing the syntheses of each of the following:
a) $\mathrm{Ph}=\mathrm{H}+\mathrm{NH}_{2}^{-} \xrightarrow[\text { 2) } \mathrm{T}_{2} \mathrm{O}]{=} \mathrm{Ph}=\mathrm{T}$
b) $-\mathrm{OH}+\mathrm{NaH}$

1) hexane
c)

3.27 a) arrange the following compounds in order of decreasing acidity and explain:

$$
\mathrm{EtO}-\mathrm{H}>\mathrm{Et}-\stackrel{\mathrm{H}}{\mathrm{~N}}-\mathrm{H}>\mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{C}-\mathrm{H}
$$

electronegtivity decreases
b) Arrange the conjugate bases in order of increasing basicity:

$$
\mathrm{EtO}^{-}<\mathrm{Et}-\overline{\mathrm{N}} \mathrm{H}<\mathrm{CH}_{3} \overline{\mathrm{C}}_{2}
$$

3.28 Arrange the following compounds in order of decreasing acidity :
a)

$$
\mathrm{H}_{3} \mathrm{C}=\mathrm{H}>\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}
$$

b) $\mathrm{CH}_{3} \mathrm{CHClCO}_{2} \mathrm{H}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{2}^{+}>\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}>\mathrm{CH}_{3} \mathrm{OCH}_{3}$
3.29 Arrange the following compounds in order of increasing basicity:
a) $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}<\mathrm{CH}_{3} \mathrm{NH}_{2}<\mathrm{CH}_{3} \mathrm{NH}^{-}$
b) $\mathrm{CH}_{3} \mathrm{O}^{-}<\mathrm{CH}_{3} \mathrm{NH}^{-}<\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{-}$
c) $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{C}^{-}<\mathrm{CH}_{3} \mathrm{CH}_{2}=\mathrm{CH}^{-}<\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}^{-}$
3.30 Draw the structures of triprotic acid H3PO4 and diprotic acid H3PO3

3.31 Supply the curved arrow necessary for the following reactions:

3.32
a)

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H} & \rightleftharpoons \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CO}_{2}^{-} \\
\text {pka }_{\text {acid }} \sim 5 & \text { pka }_{\text {ammonium }} \sim 10
\end{aligned}
$$

Neutral form
Salt form
b): salt form is dominating
3.33
a)

electron-attracting inductive effect
b) Two negative centers
3.34: HB 3.35 Omitted
3.36 a) Explain both protons being more acidic than acetic acid
b) Explain all of the C-C bond in dianion are same length as well as all of the C-O bonds

