(A) SCI Journal Papers: C. - L. Cheng (1996-) * Corresponding author (June 2020 updated)

4. Ashek-I-Ahmed1, Laia Gines2, Soumen Mandal2, Chang-You Song1, Oliver A. Williams2 and Micahella N. Sarmiento1, Chia-Liang Cheng1*, Facile amine termination of nanodiamond particles and their surface reaction dynamics, ACS Omega, 4, 16, 16715-16723 (Sept 19, 2019); DOI: 10.1021/acsomega.9b00776.

5. Po-Han Tseng1,#, Zong-Lin Siel1,#, Meng-Chieh Liu1, Han-Syuan Lin1, Wan-Yu Yang1, Ting-Yu Lin1, Hsing-Pang Hsieh2, Shih-Che Hung3,4, Chia-Liang Cheng5, Hsin-Hou Chang3,4,*, Chiou-Hwa Yuh1, 6, 7, 8,*, Identification of two novel small compounds that inhibit liver cancer formation in zebrafish and analysis of their conjugation to nanodiamonds to further reduce toxicity, Advanced Therapeutics, 1900105 (Sept 13, 2019).

7. Elena Perevedentseva,a, b Artashes Karmenyan,a Yu-Chung Lin,a, c Chang-You Song,a Zhe- Rui Lin,a Ashek-I-Ahmed,a Chia-Chi Chang,b Svetlana Norina,c Valentina Bessalova,d Nikolai Perov,d Olga Levinson,e Boris Zousman,e Chia-Liang Cheng a,* Multifunctional Bio and Medical Applications of Magnetic Nanodiamond, J. Biomedical Optics, 23(9), 091404 (September 2018) (Published online, Sept. 21, 2018). IF=2.367

13. Ashek-I-Ahmed, Soumen Mandal, Laia Gines, Oliver A. Williams, and Chia-Liang Cheng*, Low

16. Y.-C. Lin¹, K.-T. Wu¹, Z.-R. Lin¹, E. Perevedentseva¹,², A. Karmenyan¹, M.-D. Lin³, C.-L. Cheng⁴, Nanodiamond for Bio labeling and Toxicity Evaluation in the Zebrafish Embryo \textit{in vivo}, *J. of Biophotonics*, Aug;9(8):827-36 (2016) \textbf{IF=3.763} (光電 17.89%) ▲: 19

20. Yu-Chung Lin,a Elena Perevedentseva,a, b Chia-Liang Cheng a,*, Raman Spectroscopic Study on the Excystation Process in a Single Unicellular Organism Amoeba (Acanthamoeba polyphaga), *J. Biomedical Optics*, 20(5) 051042 (May, 2015). \textbf{IF=2.555} , ▲: 2 (光電 38.95%)

……………………………………………………………..

22. Gaikwad, SS (Gaikwad, Shrikrushna Shivaji) ; Gandhi, AC (Gandhi, Ashish Chhaganlal) ; Pandit, SD (Pandit, Swarada D.) ; Pant, J (Pant, Jayashree); Chan, TS (Chan, Ting-Shan) ; Cheng CL (Cheng, Chia-Liang); Ma, YR (Ma, Yuan-Ron); Wu, SY (Wu, Sheng Yun), Oxygen induced strained ZnO nanoparticles: an investigation of Raman scattering and visible photoluminescence, *Journal of Materials Chemistry C*, V2, 35, 7264-7274 (Sept 2014). \textbf{IF=6.641}, ▲: 17 (物理 9.55%)

24. Shih, PH (Shih, Po-Hsun); Cheng CL (Cheng, Chia-Liang); Wu, SY (Wu, Sheng Yun), Short-range spin-phonon coupling in in-plane CuO nanowires: a low-temperature Raman investigation, *Nanoscale Research Letters*, 8, 398 (Sep. 2013) \textbf{IF=3.125} ▲: 2 (物理 21.32%)

26. Mona Vishnudutt Jani, C.-J. Kuo; Elena Perevedentseva; A. V. Priezzhev; Chia-Liang Cheng*,

30. Samsonova, YS (Samsonova, Yu. S.); Priezzhev, AV (Priezzhev, A. V.); Petrova, GP (Petrova, G. P.); Gibizova, VV (Gibizova, V. V.); Ye, YS (Ye, Y.-S.); Su, TH (Su, T.-H.); Perevedentseva, EV (Perevedentseva, E. V.); Cheng, CL (Cheng, Chia-Liang), Investigation of interaction of albumin molecules with diamond nanoparticles in aqueous solutions by dynamic light scattering, *Quantumelectronic* Volume: 42 Issue: 6 Pages: 484-488 (2012)

41. E. Perevedentseva¹,², N. Melnik¹,², C.-Y. Tsai², Y.-C. Lin², M. Kazaryan¹, C.-L. Cheng*, Effect of surface adsorbed proteins on the photoluminescence of nanodiamond, *J. Appl. Phys.* 109, 034704 (Feb, 2011) (IF=2.064, Cited: 4)

52. Rupesh S Devan1,Wei-Der Ho, Chia-Hao Chen, Hung-Wei Shiu, Ching-Hwa Ho, Chia-Liang Cheng, Sheng Yun Wu, Yung Liou and Yuan-Ron Ma, High room-temperature photoluminescence of one-dimensional Ta₂O₅ nanorod arrays, *Nanotechnology*, 20 (Oct. 2009) 445708 (5pp). (IF=3.652; Cited: 7)

57. Chia-Liang Cheng1,2, Der-Shan Sun3,4, Wen-Chen Chu5, Yao-Hsuan Tseng6, Han-Chen Ho7, Jia-Bin Wang8, Pei-Hua Chung9, Jiann-Hwa Chen10, Pei-Jane Tsai11, Nien-Tsung Lin11, Mei-Shian Yu11 and Hsin-Hou Chang2,3,4*, The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance, *J. Biomedical Science*, 16, 7 (Jan. 2009). (IF=1.96; Cited: 26)

64. S. Treschev1, P. - W. Chou1, Y. - H. Tseng2, J. - B. Wang1, E. Perevedentseva1, C. - L. Cheng4*, Photoactivities of the mixed phase visible-light-activated carbon-containing titanium dioxide: The effect of carbon incorporation, *Applied Catalysis B-Environmental*, 79, 8-16 (Jan. 2008). (IF=8.328, Cited: 40)

66. Jui - I Chao1, Elena Perevedentseva1,4, Pei - Hua Chung1, Kuang - Ka Liu1, I - Ling Hsu1, Chih - Yuan Cheng1, Chia - Ching Chang1,4, Chia - Liang Cheng4*, Nanometer-Sized Diamond Particle as a Probe for Bio-labeling, *Biophysical Journal*, 93, 2199-2208 (Sept., 2007). This paper was selected for October 2007 issue of the Virtual Journal of Nanotechnology Environment, Health and Safety, http://icon.rice.edu/virtualjournal.cfm, published by the

68. Elena Perevedentseva1, 2, Chih-Yuan Cheng1, Pei-Hua Chung1, Jhih-Sian Tu2, Yu-Hsin Hsieh1 and Chia-Liang Cheng*, “The interaction of protein lysozyme with bacteria *E. coli* observed using nanodiamond labeling,” *Nanotechnology*, 18, 315102 (2007). (IF=3.652, Cited: 24)

(B) Book Chapter:

(C) Patent:
1. 趙瑞益、陳清漂、鄭嘉良, 包含奈米鑽石載體、藥物及其製備的方法和用途, 中華明國 I-414309 號專利, 2013/11/11~2029/7/12 (Nov 12, 2013)

(D) International Conference:
with light and bioapplications of gold- and gold-shell nanoparticles. 15th International Conference "Laser Applications in Life Sciences" LALS2019, 18-20 Nov 2018, Ramat-Gan, Israel (Invited talk)

18. Yu-Chung Lin1, Elena Perevedentseva1, Zhe-Rui Lin1, Christoph E. Nebel2, Giorgio Speranza3 Artashes Karmenyan1, Chia-Liang Cheng*1, Nanodiamond–gold core shell nanoparticles for bio-imaging applications, NDNC 2018, 05/20-05/24 2018, Flagstaff, Arizona USA (Oral)

23. Chia-Liang Cheng*, Raman Spectroscopy in bio and medical applications, 14th Annual meeting
of Japan Association of Medical Spectroscopy, Awaji Island, 4-7 Dec 2016, Japan. (Keynote)

51. C.-L. Cheng, Biophysical interaction of Nanodiamond and unicellular organisms in vivo,

55. C.-L. Cheng, Nanodiamond for Bio Imaging and Drug Delivery, International Conference on Nanotechnology in Medicine" (NanoMED), 7-9 November 2012 at University College London, UK. (Invited talk).

64. Y.-C. Lin, L.-W. Tsai, K.-T. Wu, E. Perevedentseva, C.-L. Cheng. Nanodiamond for intracellular
imaging in the microorganism in vivo. Hasselt Diamond Workshop 2012 SBDD XVII, March 14-16, 2012 Hasselt, Belgium, 44. (Oral)

72. C. -Y. Lee 1, S. -F. Hung 1, J. -Y. Lin 2, E. Perevedentseva 1, K. - J. Huang 2, C. - L. Cheng1,* The immune responses of nanodiamond in blood system in the cellular model, 22nd European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides, Sept. 4-8, 2011, Garmisch-Partenkirchen, Germany (Oral)

74. C.-L. Cheng1*, E. Perevedentseva1,2, A. V. Lugovstov, A.V. Priezzhev, Nanodiamond used for bio imaging and drug delivery, the III International Symposium on Topical Problems of Biophotonics, July 16 - July 22, 2011, St. Petersburg- Nizhny Novgorod, Russia. (Invited talk)

77. D. Chubich, A. Vitukhnovsky, E. Perevedentseva, C.L. Cheng Effect of Noble Metal Core Plasmons on Spectroscopic Properties of Organic Shell. 4th IEEE International NanoElectronics Conference, 21-24 June, Tao-Yuan, Taiwan (poster)
78. C.-Y. Lee1, S.-F. Hung2, J.-Y. Lin2, Y.-C. Lin1 E. Perevedentseva1, K.-J. Huang2, A. Lugovtsov3, A. Priezzhev3, C.-L. Cheng1*, Biomedical Applications of Nanodiamond: The Interaction of Nanodiamond with the Blood and Immune Systems, International Conference on New Diamond and Nano Carbon, 16-21 May 2011, Matsue Japan. \textit{(Invited talk)}

79. M. Jani1*, J.-S. Tu1, T.-Y. Kang1, Cheng-Yen Tsai1, E. Perevedentseva1,2, C.-L. Cheng1*, Surface modification on nanodiamond: Photoluminescence and Raman Studies, International Conference on New Diamond and Nano Carbon, 16-21 May 2011, Matsue Japan. \textit{(Oral talk)}

80. C.-Y. Lee1, S.-F. Hung1, J.-Y. Lin2, E. Perevedentseva1, K.-J. Huang2, C.-L. Cheng1*, Nanodiamond interaction with the blood system: blood rheological properties and the immune responses in cellular model, Hasselt Diamond Workshop - SBDD XVI, Hasselt, Belgium 02, 21-23, 2011. \textit{(Oral talk)}

81. C.-Y. Lee1,†, S.-F. Hung1, J.-Y. Lin2, E. Perevedentseva1, K.-J. Huang2,§, C.-L. Cheng1*, On the nanodiamond interaction with macrophage: the first defense line of human immune system towards nanodiamond, Hasselt Diamond Workshop - SBDD XVI, Hasselt, Belgium 02, 21-23, 2011. \textit{(Poster)}

82. C.-L. Cheng*, On the bio/medical applications of nanodiamond, National Seminar on Physics of Materials and Materials Based Device Fabrication (NSPM-MDF-2011), Shivaji University, Kolhapur, India, 17-18 February, 2011. \textit{(Invited talk)}

83. Chia-Liang Cheng*, The interaction of Nanodiamond with Human Blood System \textit{in vitro}: Effects on the Deformability, Aggregation and Oxygenation of Human Red Blood Cells, The 8th Cross straight workshop on Nano Science and technology, 19-22 Dec. 2010, Hong Kong \textit{(Invited talk)}

84. Chia-Liang Cheng, Nanodiamond prepared for bio imaging and drug delivery, 2010年全国电子显微学学术年会暨第八届海峡两岸电子显微学学术研讨会, 8-14, Oct. 2010, Hong Zhou, China \textit{(Invited talk)}

86. Y.-C. Lin1, F.-Y. Su1, E. Perevedentseva1,3, T.-H. Su1, A. Lugovtsov2, A. Priezzhev2, A. Karmenyan4, C.-L. Cheng1*, Nanodiamond Effects on the Deformability, Aggregation and Oxygenation of Human Red Blood Cells in vitro: the microrheologic and spectroscopic point of view, 21st European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides, Sept. 6-9, 2010, Budapest, Hungary \textit{(Oral)}

87. E. Perevedentseva, A. Chatterjee, C.-Y. Cheng, Y.-S. Ye, C.-L. Cheng*, Effects of ultra-fine nanodiamonds with various surface and structural properties on bacteria Escherichia Coli cell wall, 21st European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes, and Nitrides, Sept. 6-9, 2010, Budapest, Hungary \textit{(Poster)}

101. A. Chatterjee¹*, E. Perevedentseva¹², C.-Y. Cheng¹, C.-L. Cheng¹, Interaction of ultrafine nanodiamond with bacteria E. coli, Nov. 310-Dec.4, 2009, MRS Annual meeting, Boston USA.

105. E.V. Perevedentseva*, S.J. Cai, I.T. Chiang, K.K. Liu, J.I Chao, C.L. Cheng*, Raman and

119. Z.C. Hong, E. Perevedentseva, Y.C. Cai, S. Treschev, C.L. Cheng*, Surface Enhanced Raman Scattering from nanocarbon structures using nano-Ag photo-reduced by visible-light

126. S.-B. Wu1*, Jia-Bin Wang2, Sergey Treschev2 and Chia-Liang Cheng2*, Evidence on the carbon facilitated anatase to rutile phase transformation for the visible-light responsive carbon containing TiO2 nanoparticles, 2008 ICMCTF, 28 April - 2 May, San Diego, (Poster)

137. C.-L. Cheng1, C.-Y. Cheng1, P.-H. Chung1, J.-S. Tu1, C.-D. Chu1, P.-Z. Tsai1, E. Perevedentseva1,2. The nanodiamond-based bio labeling of protein interaction with bacteria, the first Conference of New Diamond and Nano Carbons, May 28-31, 2007, Osaka, Japan. (Oral)

139. A.V. Karmenyan1, E. Perevedentseva2,3, C. L. Cheng2, Diamond-graphite transformation observed from nanodiamond particles collision with solid surface, the first Conference of New Diamond and Nano Carbons, May 28-31, 2007, Osaka, Japan.

141. Kuang-Kai Liu, Chia-Liang Cheng, Chia-Ching Chang, Jui-I Chao, Detection of carboxylated nanodiamonds on cell, The twenty-two Joint Annual Conference of Biomedical Science, Taipei, Taiwan, March 17-18, 2007 (poster, Abstract No. 147)

(E) Domestic Conferences:

14. L.-W. Tsai, Y.-C. Lin, E. Perevedentseva, C.-L. Cheng. Luminescent nanodiamond for probing

17. H. M. Liu, Y.T. Yang, Y.S. Ye, D. Dementieva, E. Perevedentseva, C.L. Cheng Analysis of 100 nm nanodiamond with lysozyme or human serum albumin proteins complex formation. The Physics Society of Republic of China Annual meeting, Jan. 17-19 2012, Chiayi, Taiwan E01.00094

22. L.-W. Tsai, Y.-C. Lin, Y.- S. Ye, E. Perevedentseva, C.- L. Cheng, Fluorescence Spectroscopic Study of Interaction between 5 nm Nanodiamond with Hemoglobin. 29th Symposium on Spectroscopic Technologies and Surface Science, 21-23, July, 2011, Nantou, Taiwan, P40

29. L. W. Tsai, Y.C. Lin, E. Perevedentseva, C. L. Cheng, A Spectroscopic Study on the Interaction

34. Tsai-yang Kang, Cheng-Yen Tsai, Jhih-Sian Tu, Elena Perevedentseva, Chia-Liang Cheng, Temperature dependent C=O vibration frequency and thermal effects on the photoluminescence of nanodiamonds; 2011 Joint American Vacuum Society Taiwan-The Physical Society Republic of Cluina Annual Meeting: Advances in Nano-Bio Interfaces 25-26 Jan. 2011, Taipei, Taiwan, (poster AVS-P-10)

39. Tsai-yang Kang, Cheng-Yen Tsai, Jhih-Sian Tu, Elena Perevedentseva, Chia-Liang Cheng, Temperature dependent C=O vibration frequency and thermal effects on the photoluminescence of nanodiamonds; Annual Meeting of the Physical Society of R.O.C. 25-24 Jan. 2011, Taipei, Taiwan, 1310 (poster AP-070)

44. CY Lee, SF Huang, JY Lin, CY Cheng, TH Su, YS Ye, E. Perevedentseva, A. Chatterjee, CL Cheng, The first defense line of immune system: macrophage and its interaction with nanodiamond. 28th Symposium on Spectroscopic Technologies and Surface Sciences, 14-16 July 2010, Nantou, Taiwan, p.38.

45. L.W. Tsai, Y.C. Lin, E. Perevedentseva, A. Priezzhev, A. Lugovtsov, A. Karmenyan, C.L. Cheng, Oxygenation and deoxygenation states of red blood cells interacting with nanodiamond at different concentration. 28th Symposium on Spectroscopic Technologies and Surface Sciences, 14-16 July 2010, Nantou, Taiwan, p.39.

46. CY Cai, NN Melnik, FY Su, E. Perevedentseva, MA Kazaryan, CL Cheng Effect of protein adsorption on nanodiamonds size-dependent luminescence, 28th Symposium on Spectroscopic Technologies and Surface Sciences, 14-16 July 2010, Nantou, Taiwan, 40.

50. Y.C. Lin, F.Y. Su, L. W. Tsai, C. L. Hsu, E. Perevedentseva, A. Priezzhev, A. Lugovtsov, A. Karmenyan, C. L. Cheng, The interaction of nanodiamond with red blood cells focus on on their oxygenation and deoxygenation activities; (AP-036), Annual Meeting of the Physical Society of R.O.C. 2-4 Feb. 2010, Tainan, Taiwan, 161;

57. Huan-Cheng Chang(張煥正), Chia-Liang Cheng(鄭嘉良), “奈米鑽石及複合奈米碳粒子的開發與生物應用”，台灣奈米科技展 (10-7~9, 2009, poster)

70. Z.-C. Hong(洪子奇), E. Perevedentseva, S. Treschev, Y. - H. Cai(蔡易宏), C.-L. Cheng(鄭嘉良)*, "Using nano-structured silver photoreduced from AgNO3 by visible-light activated TiO2 as SERS-active substrate for observing the surface enhanced Raman scattering from nanodiamond powder", 中華民國物理學會 2008 年年會 (01-28~30, 2008, poster)

82. Y. - H. He, E. Perevedentseva, C. - L. Cheng, “Nanoparticle induced surface enhanced Raman spectroscopy of nano-diamond prepared by ion sputtering and chemical vapor deposition methods”, 中華民國物理學會 2006 年年會 (01-16–18, 2006, poster).

106. C.-L. Cheng*, C.-T. Chia, C.-C. Chiu, C.-C. Wu, I.-N. Lin, "In-situ Raman spectroscopic studies on thermal annealing and hydrogen effects on diamond like carbons ", 18th Symposium on Spectroscopy and Surface Sciences, Taiwan. (07-21~24-2000, oral presentation).

(F) 研究計畫：

1. 國科會 98 年度、「具功能導向的奈米鑽石與生物分子或藥物複合體的製備、分析、操控及生物系統應用(2/3)」，NSC-98-2120-M-259-001，計畫主持人。(奈米國家計畫)
2. 國科會 98 年度、「奈米材料粒子對紅血球的微流動特性及血液流動力學的影響研究(2/3)」，NSC-97-2923-M-259-001-MY3，計畫主持人。
3. 國科會 97 年度、「具功能導向的奈米鑽石與生物分子或藥物複合體的製備、分析、操控及生物系統應用(1/3)」，NSC-97-2120-M-259-002，計畫主持人。(奈米國家計畫)
4. 國科會 97 年度、「奈米材料粒子對紅血球的微流動特性及血液流動力學的影響研究(1/3)」，NSC-97-2923-M-259-001，計畫主持人。
5. 國科會 96 年度、「生物分子在奈米粒子上的固定：基礎與應用研究 (3/3)」，NSC-96-2119-M-259-005，計畫主持人。
6. 國科會 96 年度、「奈米鑽石-蛋白質複合體之開發、操作與生物醫學之應用(3/3)」，NSC-96-2120-M-259-002，計畫主持人。(奈米國家計畫)
7. 國科會 95 年度、「生物分子在奈米粒子上的固定：基礎與應用研究 (2/3)」，NSC-95-2112-M-259-007，計畫主持人。
8. 國科會 95 年度、「奈米鑽石-蛋白質複合體之開發、操作與生物醫學之應用(2/3)」，NSC-95-2112-M-259-002，計畫主持人。(奈米國家計畫)
9. 國科會 94 年度、「生物分子在奈米粒子上的固定：基礎與應用研究 (1/3)」，NSC-94-2120-M-259-013，計畫主持人。
10. 國科會 94 年度、「奈米鑽石-蛋白質複合體之開發、操作與生物醫學之應用(1/3)」，NSC-94-2120-M-259-002，計畫主持人。(奈米國家計畫)
11. 國科會 93 年度、「奈米鑽石光譜研究(2/2)」，NSC-93-2112-M-259-005，計畫主持人。
12. 國科會 92 年度、「奈米鑽石光譜研究(1/2)」，NSC-92-2112-M-259-012，計畫主持人。
13. 國科會 91 年度、「由碳素成之奈米尺度材料研究」，NSC-91-2112-M-259-010，計畫主持人。
14. 國科會 91 年度、「奈米結構的硼碳氮材料系統之單層及多層膜-子計畫二：奈米結構單層及多層膜的硼碳氮材料之熱穩定性研究」，NSC-91-2216-E-259-008，計畫主持人。
15. 國科會 90 年度、「星際奈米鑽石: 實驗光譜分析對天文尚未定義之紅外發射頻譜之應用與研究(中法國合計畫)」，NSC-90-2113-M-001-082，計畫共同主持人。
16. 國科會 90 年度、「氮化硼材料之光譜研究(II)」，NSC-90-2112-M-259-019，計畫主持人。
17. 國科會 89 學年度、「氮化硼材料之光譜研究 (I)」，NSC-89-2112-M-259-012，計畫主持人。
18. 國科會 89 學年度、「類鑽石薄膜及奈米鑽石的臨場電子場發射研究」，NSC-91-2122-M-259-006，計畫主持人。
19. 國科會 88 學年度、「氫原子與類鑽石薄膜材料反應之光譜研究 (II)」，NSC-88-2112-M-259-003，計畫主持人。
20. 國科會 87 學年度、「氫原子與類鑽石薄膜材料反應之光譜研究 (I)」，NSC-87-2112-M-003-013，計畫主持人。

(E) 指導大專生參與國科會「大學部學生專題研究計畫」

1. 國科會 97 年度大專生參與專題研究計畫計畫主持人，「利用光譜學分析官能基化奈米鑽石-生物分子/藥物複合體，邱鈺中」，NSC-97-2815-C-259-002-M，計畫主持人(研究報告獲選全國前 6 名)
2. 國科會 96 年度大專生參與專題研究計畫計畫主持人，「摻雜奈米碳管對氧化鋅的相變效果，王家彬」，NSC-96-2815-C-259-004-M，計畫主持人(研究報告獲選全國前 6 名)
3. 國科會 95 年度大專生參與專題研究計畫計畫主持人，「利用傅立葉轉換紅外線光譜學研究並分析經官能基化奈米鑽石表面上 C=O 鍵結之紅外線吸收光譜與奈米粒徑的關係，洪銘賢」，NSC-95-2815-C-259-012-M，計畫主持人。(研究報告獲選全國前 6 名)
4. 國科會 94 年度大專生參與專題研究計畫計畫主持人，「氧化鋅與氫氣催化反應之紅外線光譜臨場觀測研究，周博文」，NSC-94-2815-C-259-012-M，計畫主持人。
5. 國科會 93 年度大專生參與專題研究計畫計畫主持人，「利用拉曼光譜即傅立葉轉換紅外光譜學研究奈米級多孔洞材料：做為未來氫氣儲存理想材料的可能性研究，顏秀蘭」。

C. - L. Cheng 30
NSC-93-2815-C-259-010-M，計畫主持人。

6. 國科會 90 年度大專生參與專題研究計畫計畫主持人，「立方氮化硼(c-BN)材料熱處理與氮原子蝕刻之官能化薄膜之外光譜量測與研究」，吳岳翰，NSC-90-2815-C-259-004-M，計畫主持人。

7. 國科會 89 年度大專生參與專題研究計畫計畫主持人，「GaN 半導體材料之紅外光譜量測與研究」，林永倫，NSC-89-2815-C-259-006-M，計畫主持人。

(F) 指導學生論文：

2009, 碩士論文
1. 蔡易宏 : 使用拉曼光譜技術對含碳混相的二氧化鈦研究(光電工程研究所)
 Yi-Hong Cai: Studies of carbon-containing mixed phase titanium dioxide using Raman spectroscopy
2. 唐淑芸：奈米鑽石與大腸桿菌交互作用之拉曼光譜學研究(光電工程研究所)
 Shu-Yun Tang: Raman spectroscopic investigation of nanodiamond interaction with bacteria Escherichia coli
3. 蔡弦助: 利用熱脫附與光譜學方法研究表面官能基化的奈米鑽石以及其生物醫學上的應用 (應用物理研究所)
 Sian-Jhu Cai: Temperature desorption and spectroscopic studies of surface functionalized nanodiamond and their bio-medical applications
4. 蔡沛真: 溶菌酶與奈米鑽石複合物生物應用製備之光譜學及蛋白質活性研究(應用物理研究所)
 Pei-Jhen Cai: Spectroscopic and protein activity studies of lysozyme and nanodiamond complex prepared for bio-applications

2008, 碩士論文
1. 黃致業: 單一根氧化銅奈米線之光譜學研究(應用物理研究所)
 Chih-Yeh Huang: Spectroscopic studies of a single cupric oxide nanowire
2. 朱啟東: 生物分子官能基化的奈米鑽石與細胞作用之光譜學研究(應用物理研究所)
 Ci-Dong Chu: Temperature-dependent surface C=O stretching bio-application of carboxylated nanodiamond
3. 洪子奇: 利用可見光反應之氧化鈦還原硝酸銀產生 Ag-TiO2 奈米結構藉以觀察表面增強拉曼散射效應(光電工程研究所)
 Zih-Ci Hong: Surface enhanced Raman scattering observed using Ag-TiO2 nano-structured powder from the photoreduction of AgNO3 with visible-light activated TiO2
4. 吳書葆: 經由碳協助的二氧化鈦相變化研究(應用物理研究所)
 Shu-Bau Wu: Carbon assisted TiO2 phase transformation

2007, 碩士論文
1. 鄭智元: 奈米鑽石-蛋白質複合體與細菌及細胞作用之光譜學研究(應用物理研究所)
 Chih-Yuan Cheng: Spectroscopic study of nanodiamond-protein complexes and their interaction with bacteria and cells

2006, 碩士論文
1. 何彥廷：奈米鑽石之表面增強拉曼光譜研究（應用物理研究所）
 Yan-Ting He：Surface enhanced Raman scattering investigation of nanodiamonds

2. 鍾珮華：生物分子官能基化的奈米鑽石與細胞作用之光譜學研究（應用物理研究所）
 Pei-Hua Chung：Spectroscopic study of bio-functionalized nanodiamonds and their interaction with cells

2005. 碩士論文
1. 李承遠：以拉曼光譜研究石墨包裹金屬的奈米晶粒（應用物理研究所）
 Chen-Yuan Lee：On graphite encapsulated metal nanoparticles: A Raman spectroscopic study

2004. 碩士論文
1. 唐國硯：不同尺寸奈米鑽石拉曼光譜研究（材料科學與工程研究所）
 Kuo-Yen Tang：Size-dependent Raman spectroscopic Studies of Nonometer-sized Diamonds

2003. 碩士論文
1. 許智明：氮化硼單層膜與氮化鋁多層膜的合成與特性（材料科學與工程研究所）
 Chih-Ming Hsu：Synthesis and Characterization of BN Thin Films and BN/AlN Multilayers

2001. 碩士論文
1. 邱建超：氫原子對類鑽石薄膜材料反應之研究（材料科學與工程研究所）
 Cheng-Chao Chiu：Spectroscopic Studies of Hydrogen Etching on Diamond-Like Carbon Films

(G) 指導專題研究學生：
 蔣宜庭、邱鈺中、王家彬、黃郁仁、張尚禎、陳俊銘、顏秀蘭、吳岳翰、蔡東昇

C. - L. Cheng 32